Combining Multiple Expert Annotations Using Semi-supervised Learning and Graph Cuts for Crohn's Disease Segmentation
نویسندگان
چکیده
We propose a graph cut (GC) based approach for combining annotations from multiple experts and segmenting Crohns disease (CD) tissues in magnetic resonance (MR) images. Random forest (RF) based semi supervised learning (SSL) predicts missing expert labels while a novel self consistency (SC) score quantifies the reliability of each expert label and also serves as the penalty cost in a second order Markov random field (MRF) cost function. The final consensus label is obtained by GC optimization. Experimental results on synthetic images and real CD patient data show our final segmentation to be more accurate than those obtained by competing methods. It also highlights the effectiveness of SC score in quantifying expert reliability and accuracy of SSL in predicting missing labels.
منابع مشابه
Semi-supervised learning and graph cuts for consensus based medical image segmentation
Medical image segmentation requires consensus ground truth segmentations to be derived from multiple expert annotations. A novel approach is proposed that obtains consensus segmentations from experts using graph cuts (GC) and semi supervised learning (SSL). Popular approaches use iterative Expectation Maximization (EM) to estimate the final annotation and quantify annotator’s performance. Such ...
متن کاملA Feature Space View of Spectral Clustering
The transductive SVM is a semi-supervised learning algorithm that searches for a large margin hyperplane in feature space. By withholding the training labels and adding a constraint that favors balanced clusters, it can be turned into a clustering algorithm. The Normalized Cuts clustering algorithm of Shi and Malik, although originally presented as spectral relaxation of a graph cut problem, ca...
متن کاملSemi-Supervised and Active Learning for Automatic Segmentation of Crohn's Disease
Our proposed method combines semi supervised learning (SSL) and active learning (AL) for automatic detection and segmentation of Crohn's disease (CD) from abdominal magnetic resonance (MR) images. Random forest (RF) classifiers are used due to fast SSL classification and capacity to interpret learned knowledge. Query samples for AL are selected by a novel information density weighted approach u...
متن کاملSeeded Laplaican: An Eigenfunction Solution for Scribble Based Interactive Image Segmentation
In this paper, we cast the scribble-based interactive image segmentation as a semi-supervised learning problem. Our novel approach alleviates the need to solve an expensive generalized eigenvector problem by approximating the eigenvectors using efficiently computed eigenfunctions. The smoothness operator defined on feature densities at the limit n → ∞ recovers the exact eigenvectors of the grap...
متن کاملProtein functional class prediction with a combined graph
In bioinformatics, there exist multiple descriptions of graphs for the same set of genes or proteins. For instance, in yeast systems, graph edges can represent different relationships such as protein-protein interactions, genetic interactions, or co-participation in a protein complex, etc. Relying on similarities between nodes, each graph can be used independently for prediction of protein func...
متن کامل